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Abstract
Anovel class of conservative numericalmethods for general conservative Stratonovich
stochastic differential equations with multiple invariants is proposed and analyzed.
These methods, which are called modified averaged vector field methods, are con-
structed by modifying the averaged vector field method to preserve multiple invariants
simultaneously. Based on the a prior estimate for high-order moments of the modi-
fication coefficient, the mean square convergence order 1 of the proposed methods
is proved in the case of commutative noises. In addition, the effect of the quadrature
formula on the mean square convergence order and the preservation of invariants for
modified averaged vector field methods is considered. Numerical experiments are per-
formed to verify the theoretical analyses and to show the superiority of the proposed
methods in the long time simulation.
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1 Introduction

Numerical methods for stochastic differential equations (SDEs) have attracted exten-
sive attention over the past decades, in view of the difficulty of obtaining explicit
solutions of original systems (see e.g. [2,7,10]). It is important to construct numeri-
cal methods which preserve properties of original systems as much as possible. For
conservative SDEs with one invariant, there have been many works related to numer-
ical methods in recent years. On the one hand, aiming at the SDEs with single noise,
[12] proposes an energy-preserving difference method for stochastic Hamiltonian sys-
tems and analyzes the local error. Based on the equivalent “skew gradient” (SG) form
for conservative SDEs with one invariant, [6] proposes the direct discrete gradient
methods and the indirect discrete gradient methods, and proves that these two kinds
of methods are of mean square order 1. Authors in [4] construct energy-preserving
methods for stochastic Poisson systems, and prove that those methods are of mean
square order 1 and preserve quadratic Casimir functions. On the other hand, in the case
of SDEs with multiple noises, [3] proposes the averaged vector field (AVF) method
for conservative SDEs (see [13] for the original derivation of the AVF method in the
deterministic setting). It is shown that the mean square order of the AVF method is
1 if noises are commutative and that the weak order is 1 in the general case. For the
case of quadratic invariants, [5] constructs stochastic Runge–Kutta (SRK)methods for
SDEs with quadratic invariants and [14] gives the order conditions for SRK methods
preserving quadratic invariants.

For conservativeSDEswithmultiple invariants, one difficulty is to preservemultiple
invariants simultaneously. One approach is via a projection technique,which combines
an arbitrary one-step approximation together with a projection onto the invariant sub-
manifold in each step. [15] shows that this approach is feasible in stochastic settings,
and the proposed methods could reach high strong order as supporting methods do. In
this paper, we focus on constructing a new class of multi-invariant-preserving meth-
ods, which are calledmodified averaged vector field (MAVF)methods.More precisely,
we add modification terms to the AVF method to preserve multiple invariants simul-
taneously, motivated by the ideas of line integral methods (LIMs) for deterministic
conservative ordinary differential equations (ODEs) in [1].

As is seen in (3.3), the modification terms contain a vector-valued random variable
α = (α0, α1) which is called the modification coefficient, hence a prerequisite to
acquire the convergence order of MAVF methods is the boundedness of the high-
ordermoments ofα. To this end, one technique is to truncate the Brownian increments,
which not only ensures the solvability of MAVF methods, but also makes sure that
for sufficiently small stepsize, α is uniformly small with respect to the sample point
ω . Another technique is the use of the orthogonality of Legendre polynomials, which
makes us get rid of the effect of low-order terms and then acquire the estimate for high-
order moments of α. We compare MAVF methods with Milstein method to prove that
MAVF methods are of mean square order 1.
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When the integrals contained inMAVFmethods cannot be obtaineddirectly, numer-
ical integration is an option to approximate these integrals. Thus it is necessary to
investigate the effect of the numerical integration on the mean square convergence
order and the preservation of invariants for the proposed methods. It is proved that the
induced MAVF methods are still of mean square order 1 provided that the order of
the quadrature formula is not less than 2. Generally, the invariant-preserving order in
mean square sense of theMAVFmethod using the numerical integration only depends
on the order of the quadrature formula.

The rest of this paper is organized as follows. InSect. 2,wegive someconcepts about
conservativeSDEswith invariants andpreliminary theorems and lemmas for numerical
analyses. Section 3 proposes MAVF methods for conservative SDEs with single or
multiple noises and shows the properties of these methods. Section 4 investigates
MAVFmethods using the numerical integration, and analyzes their convergence orders
and preservation of invariants. Numerical experiments are performed in Sect. 5 to
verify the theoretical analyses and to show the advantages of MAVF methods in the
long time simulation.

In the sequel, for convenience, we will use the following notations:

– |x |: The trace norm of a vector or a matrix x , i.e., |x | = √
Tr(x�x).

– Ck(Rm,Rn): The space of k times continuously differentiable functions f : Rm →
R
n .

– Ck
b(R

m,Rn): The space of k times continuously differentiable functions f : Rm →
R
n with uniformly bounded j th order derivatives, j = 1, . . . , k.

– ∇ f : The gradient of a scalar function f ∈ C1(Rm,R), i.e.,∇ f = ( ∂ f
∂x1

, . . . ,
∂ f
∂xm

)
;

or the Jacobian matrix of a vector function f ∈ C1(Rm,Rn), i.e., ∇ f =
(∇ f �

1 , . . . ,∇ f �
n )�.

– Gǎteaux derivative f (k)(x)(ξ1, . . . , ξk): If f (x) ∈ Ck(Rm,R) and ξ1, . . . , ξk ∈
R
m , then f (k)(x)(ξ1, . . . , ξk) = ∑m

i1,...,ik=1
∂k f (x)

∂xi1 ···∂xik ξ
i1
1 · · · ξ ikk .

– The closed ball B̄(y, r) with center y ∈ R
m and radius r > 0: B̄(y, r) ={

x ∈ R
m
∣∣ |x − y| ≤ r

}
.

2 Preliminary

In this section, we give the definition of an invariant for conservative SDEs and intro-
duce some lemmas and theorems for the proof of convergence.

Consider the generalm-dimensional autonomous SDE in the sense of Stratonovich

dY (t) = f
(
Y (t)

)
dt +

D∑

r=1

gr
(
Y (t)

) ◦ dWr (t), 0 ≤ t ≤ T , Y (0) = Y0, (2.1)

where Wr (t), r = 1, . . . , D, are D independent one-dimensional Brownian motions
defined on a complete filtered probability space

(
Ω,F , {Ft }t≥0,P

)
with {Ft }t≥0

satisfying the usual conditions. Assume that Y0 is a deterministic initial value, and
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that f : Rm → R
m , gr : Rm → R

m, r = 1, . . . , D, are such that (2.1) has a unique
global solution. Next we give the definition of an invariant.

Definition 2.1 (see [15]) SDE (2.1) is said to have ν invariants Li (y) ∈ C1(Rm,R),
i = 1, . . . , ν, if

∇Li (y) f (y) = 0, ∇Li (y)gr (y) = 0, r = 1, . . . , D, i = 1, . . . , ν, ∀ y ∈ R
m .

(2.2)

If we define the vector-valued function L(y) := (
L1(y), . . . , Lν(y)

)�
, then (2.2)

can be written compactly as

∇L(y) f (y) = ∇L(y)gr (y) = 0, r = 1, . . . , D, ∀ y ∈ R
m . (2.3)

Hereafter, we also say that the vector-valued function L(y), which satisfies (2.3), is
the invariant of (2.1). According to the definition of the invariant, it follows from the
stochastic chain rule that dL(Y (t)) = 0, where Y (t) is the exact solution of (2.1). This
implies that L(Y (t)) = L(Y0), a.s. This is to say, L(y), along the exact solution Y (t),
is invariant almost surely.

The following two theorems give the relationship between local errors and global
errors of numerical methods for general SDEs. In the sequel, we always assume that
the assumptions of these two theorems hold unless we make an additional statement.

Theorem 2.2 (see [8]) Suppose that the one-step approximation Ȳt,y(t + h) has order
of accuracy p1 for the expectation of the deviation and order of accuracy p2 for the
mean square deviation; more precisely, for arbitrary t0 ≤ t ≤ t0 + T − h, y ∈ R

m

the following inequalities hold:

|E (Yt,y(t + h) − Ȳt,y(t + h)
) | ≤ K ·

(
1 + |y|2

)1/2
h p1 , (2.4)

[
E |Yt,y(t + h) − Ȳt,y(t + h)|2

]1/2 ≤ K ·
(
1 + |y|2

)1/2
h p2 . (2.5)

Also, let

p2 ≥ 1

2
, p1 ≥ p2 + 1

2
.

Then for any N and k = 0, . . . , N the following inequality holds:

[
E |Yt0,Y0(tk) − Ȳt0,Y0(tk)|2

]1/2 ≤ K ·
(
1 + E |Y0|2

)1/2
h p2−1/2, (2.6)

i.e., the mean-square order of accuracy of the method constructed using the one-step
approximation Ȳt,y(t + h) is p = p2 − 1/2.
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Theorem 2.3 (see [8])Let the one-step approximation Ȳt,y(t+h) satisfy the conditions
of Theorem 2.2. Suppose that Ỹt,y(t + h) is such that

|E
(
Ỹt,y(t + h) − Ȳt,y(t + h)

)
| = O(h p1), (2.7)

[
E |Ỹt,y(t + h) − Ȳt,y(t + h)|2

]1/2 = O(h p2). (2.8)

with the same p1 and p2. Then the method based on the one-step approximation
Ỹt,y(t + h) has the same mean square order of accuracy as the method based on
Ȳt,y(t + h), i.e., its order is equal to p = p2 − 1/2.

Generally speaking, when implementing implicit numerical methods, the truncated
random variables ΔŴr (h) for the Brownian increments ΔWr (h) = Wr (t + h) −
Wr (t), r = 1, . . . , D, need to be introduced (see [8]). For this end, one can represent
ΔWr (h) = √

hξr , r = 1, . . . , D, where ξr , r = 1, . . . , D, are independent N (0, 1)-
distributed random variables. Then define ΔŴr (h) = √

hζrh as follows:

ζrh =
⎧
⎨

⎩

ξr , if |ξr | ≤ Ah,

Ah, if ξr > Ah,

−Ah, if ξr < −Ah,

(2.9)

with Ah := √
2k| ln h|, where k is an arbitrary positive integer. The following proper-

ties hold for the truncated Brownian increments.

Lemma 2.4 (see [8]) Let Ah := √
2k| ln h|, k ≥ 1, and ζrh be defined by (2.9). Then

it holds that

E(ζrh − ξr )
2 ≤ hk, (2.10)

0 ≤ E(ξ2r − ζ 2
rh) = 1 − Eζ 2

rh ≤ (1 + 2
√
2k| ln h|)hk . (2.11)

Moreover, it is not difficult to obtain the following properties:

E
(
|ΔŴr (h)|2p

) 1
2p ≤ E

(
|ΔWr (h)|2p

) 1
2p ≤ cph

1/2, ∀ p ∈ N
+,

E(ΔŴr (h))2p−1 = E (ΔWr (h))2p−1 = 0, ∀ p ∈ N
+,

E
(
ΔŴiΔŴ jΔŴk

) = E
(
ΔWiΔWjΔWk

) = 0, ∀ i, j, k ∈ {1, 2, . . . , D},
(2.12)

where cp is a constant independent of h.

3 MAVFmethods for stochastic SDEs

Consider the following autonomous m-dimensional SDE with single noise

dY (t) = f
(
Y (t)

)
dt + g

(
Y (t)

) ◦ dW (t), 0 ≤ t ≤ T , Y (0) = Y0, (3.1)
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where f and g satisfy the global Lipschitz condition. Let L(y) : Rm → R
ν be the

invariant of (3.1), i.e., ∇L(y) f (y) = ∇L(y)g(y) = 0, for all y ∈ R
m . Hereafter, we

alway assume that ∇L is continuous on R
m .

We consider the numerical approximation for (3.1) in the interval [0, T ]. Let 0 =
t0 < t1 < · · · < tN−1 < tN = T be a uniform partition of interval [0, T ], where
tn = nh, n = 0, 1, . . . , N . Let {yn}Nn=0 be some numerical approximation.

3.1 Introduction on AVFmethod

In this part, we recall the AVF method for conservative SDEs. The AVF method,
as a special discrete gradient method, is originally proposed by [13] in dealing with
conservative ODEs. For the SDE (3.1), the AVF method is proposed similarly as in
deterministic settings:

Ȳ = y + h
∫ 1

0
f (y + τ(Ȳ − y)) dτ + ΔŴ

∫ 1

0
g(y + τ(Ȳ − y)) dτ. (3.2)

If I ∈ C(Rm,R) is an invariant of (3.1), then there are two skew-symmetric matrices
S(x) and T (x) such that f (y) = S(y)∇ I (y) and g(y) = T (y)∇ I (y) (see e.g. [6]).
Especially, if S and T are constant matrices, then (3.2) preserves the invariant I . In
order to preserve the invariant I for general f and g, authors in [3] combine the skew
gradient form of (3.1) and the AVF method (3.2) to give a variant of the AVF method.
Generally, the method (3.2) and the one in [3] could not preserve multiple invariants.
This inspires us to seek for a new class of conservative methods to preserve multiple
invariants simultaneously.

3.2 MAVFmethods for conservative SDEs with single noise

In this part, we proposeMAVFmethods preservingmultiple invariants for conservative
SDEs with single noise and prove that these methods are of mean square order 1.

We denote yn+1 = ytn ,yn (tn+1), n = 0, 1, . . . , N − 1. For convenience, we write
the one-step approximation as Ȳ = Ȳt,y(t + h). Next, we give the MAVF method for
(3.1). It is generated by the following one-step approximation Ȳ :

Ȳ = y + h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α0

]

+ ΔŴ

[∫ 1

0
g(σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α1

]
, (3.3a)

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

]
α0 =

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ,

(3.3b)
[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

]
α1 =

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
g(σ (τ )) dτ,

(3.3c)

123



Modified averaged vector field methods preserving… 923

where σ(τ) = y + τ(Ȳ − y), ΔŴ = √
hζh and ζh is defined by (2.9) with Ah =√

4| ln h|, i.e., k = 2, and α0, α1 are Rν-valued random variables.
As is seen above, theMAVFmethod (3.3) can be regarded as themodification of the

AVF method in [3]. Here,
∫ 1
0 ∇L(σ (τ ))� dτ α0 and

∫ 1
0 ∇L(σ (τ ))� dτ α1 are called

modification terms. Let α = (α0, α1) and we call α the modification coefficient of
the method (3.3). The modification coefficient α satisfies (3.3b) and (3.3c) in (3.3) to
make the MAVF method conservative.

More precisely, in order to preservemultiple invariants, we perturb (3.2) as follows:

Ȳ = y + h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α0

]

+ΔŴ

[∫ 1

0
g(σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α1

]
, (3.4)

where α0 and α1 are undetermined coefficients to make this method preserve multiple
invariants. To this end, by the Taylor expansion and (3.4), one has

L(Ȳ ) − L(y)

=
∫ 1

0
∇L(y + τ(Ȳ − y)) dτ(Ȳ − y)

= h

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ α0

]

= +ΔŴ

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
g(σ (τ )) dτ −

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ α1

]
.

It is observed that choosing α0 and α1 from (3.3b) and (3.3c) in (3.3) ensures the
preservation of multiple invariants, i.e., L(Ȳ ) = L(y).

3.2.1 The a prior estimate of the modification coefficient

Let {yn}Nn=0, with y0 = Y0, be the numerical scheme generated by (3.3). We introduce
the level set

M = {
y ∈ R

m
∣∣L(y) = L(y0)

}
(3.5)

and the δ-neighbourhood of M

Mδ = {
y ∈ R

m |dist(y,M ) ≤ δ
}
, for some δ > 0, (3.6)

where dist(y,M ) = infx∈M |x − y|. Moreover, for some subsetU ⊂ R
m and k ∈ N,

we denote byCk(U ,Rn) the set of k times continuously differentiable functions from
U to R

n , and by Ck
b(U ,Rn) the subset of Ck(U ,Rn) with uniformly bounded j th

order derivatives, j = 1, . . . , k.
The following lemma gives the solvability and conservation of the MAVF method

(3.3).

123



924 C. Chen et al.

Lemma 3.1 Suppose that for some bounded Mδ , f , g, ∇L ∈ C1(Mδ) and
∇L(y)∇L(y)� is invertible on M . If y ∈ M , a.s., then there is some h0 > 0 such
that for all h ≤ h0 and almost sure ω ∈ Ω , the method (3.3) is uniquely solvable, that
is, there is a unique Ȳ = Ȳt,y(t + h), a.s., corresponding to (3.3). Moreover, it holds
that

(I) The MAVF method (3.3) preserves exactly multiple invariants Li , i = 1, . . . , ν
of SDE (3.1), i.e., L(Ȳ ) = L(y), a.s.;

(II) For every ε > 0, there exists some h1 ∈ (0, h0) such that for all h ≤ h1,

|α| ≤ ε, a.s. (3.7)

Proof We rewrite Ȳ = Ȳt,y(t + h) as

Ȳ = y + h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ

(∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

)−1

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ

]
+ ΔŴ

[∫ 1

0
g(σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ

(∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

)−1 ∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
g(σ (τ )) dτ

]

, a.s.

(3.8)

Noting that y ∈ M , one has that there is a closed ball B̄(y, δ) ⊆ Mδ . Let σy,z(τ ) =
y + τ(z − y) and Py(z) = ∫ 1

0 ∇L(σy,z(τ )) dτ
∫ 1
0 ∇L(σy,z(τ ))� dτ . Next, we prove

that there is a constant r ∈ (0, δ) such that for every fixed y ∈ M , Py(·) is invertible
on B̄(y, r).

Since M is bounded, there is a bounded convex closed set F ⊇ M . For any
y, z ∈ F , we define Q(y, z) = det(Py(z)), where det(Py(z)) denotes the determinant
of Py(z). Due to the continuity of ∇L and the fact that F × F is a bounded closed
set in R

m × R
m , Q(·, ·) is uniformly continuous on F × F . Noting that ∇L∇L�

is invertible on M , we have that Q(y, y) �= 0 for any y ∈ M . The continuity of
Q(y, y) with respect to y yields Q(y, y) > 0 for any y ∈ M or Q(y, y) < 0
for any y ∈ M . Without loss of generality, we assume that Q(y, y) > 0 for each
y ∈ M . It follows from the continuity of Q(y, y) on the bounded closed set M that
there is a constant c0 > 0 such that Q(y, y) ≥ c0 for any y ∈ M . By the uniform
continuity of Q, there is some r ∈ (0, δ) such that for every (y, y), (y, z) ∈ F × F
with |y−z| ≤ r , |Q(y, z)−Q(y, y)| < c0

2 . In this way, for every y ∈ M , z ∈ B̄(y, r),
|Q(y, z) − Q(y, y)| < c0

2 . This implies that Q(y, z) > Q(y, y) − c0
2 ≥ c0 − c0

2 =
c0
2 > 0 for y ∈ M , z ∈ B̄(y, r). That is to say, there is a constant r ∈ (0, δ) such that
for every fixed y ∈ M , Py(·) is invertible on B̄(y, r).
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Let y ∈ M be fixed. For each z ∈ B̄(y, r), we define

ϕ(z) = y + h

[∫ 1

0
f (σy,z(τ )) dτ −

∫ 1

0
∇L(σy,z(τ ))� dτ Py(z)

−1

∫ 1

0
∇L(σy,z(τ )) dτ

∫ 1

0
f (σy,z(τ )) dτ

]

+ ΔŴ

[∫ 1

0
g(σy,z(τ )) dτ −

∫ 1

0
∇L(σy,z(τ ))� dτ Py(z)

−1

∫ 1

0
∇L(σy,z(τ )) dτ

∫ 1

0
g(σy,z(τ )) dτ

]
,

= y + h

[∫ 1

0
f (σy,z(τ )) dτ − M(z)

]

+ ΔŴ

[∫ 1

0
g(σy,z(τ )) dτ − N (z)

]
, a.s., (3.9)

where M(z) = ∫ 1
0 ∇L(σy,z(τ ))� dτ Py(z)−1

∫ 1
0 ∇L(σy,z(τ )) dτ

∫ 1
0 f (σy,z(τ )) dτ

and N (z) = ∫ 1
0 ∇L(σy,z(τ ))� dτ Py(z)−1

∫ 1
0 ∇L(σy,z(τ )) dτ

∫ 1
0 g(σy,z(τ )) dτ . Then

(3.8) can be written as Ȳ = ϕ(Ȳ ), a.s.
We claim that ϕ is a contraction mapping from B̄(y, r) into itself. In fact, sinceMδ

is a bounded closed set, it follows from assumptions on f , g and ∇L that, there exists
a constant Kδ > 0 such that

max
y∈Mδ

(| f (y)| + |g(y)| + |∇L(y)| + | f ′(y)| + |g′(y)| + |∇L ′(y)|) ≤ Kδ. (3.10)

In what follows, we use Kδ to denote a generic constant dependent on Mδ , but
independent of y and h, and it may vary from one line to another. For an invert-
ible and continuously differentiable matrix-valued function G on R

m , we notice
that [G(y)−1]′ = −G(y)−1G ′(y)G(y)−1. By the assumption ∇L ∈ C1(Mδ),
we have that for each y ∈ M , Py(·)−1 ∈ C1(B̄(y, r)). In addition, one has that
∫ 1
0 f (σy,z(τ )) dτ ,

∫ 1
0 g(σy,z(τ )) dτ ,

∫ 1
0 ∇L(σy,z(τ )) dτ ∈ C1(B̄(y, r)). Hence, it fol-

lows from (3.10) that

max
z∈B̄(y,r)

∣∣∣∣
d

d z

∫ 1

0
f (σy,z(τ )) dτ

∣∣∣∣

≤ max
z∈B̄(y,r)

∫ 1

0

∣∣ f ′(σy,z(τ ))τ
∣∣ dτ ≤

∫ 1

0
max

z∈B̄(y,r)

∣∣ f ′(σy,z(τ ))
∣∣ τ dτ

≤
∫ 1

0
max

y∈B̄(y,r)

∣∣ f ′(y)
∣∣ τ dτ ≤

∫ 1

0
max
y∈Mδ

∣∣ f ′(y)
∣∣ τ dτ ≤ 1

2
Kδ.
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This means that
∫ 1
0 f (σy,z(τ )) dτ ∈ C1

b(B̄(y, r)). Clearly, maxz∈B̄(y,r)

∣∣∣∣
∫ 1
0 f (σy,z

(τ )) dτ

∣∣∣∣ ≤ Kδ . Same arguments also hold for
∫ 1
0 g(σy,z(τ )) dτ ,

∫ 1
0 ∇L(σy,z(τ )) dτ ,

and Py(z). Since Py(·)−1 ∈ C1(B̄(y, r)), it holds that maxz∈B̄(y,r)

∣∣Py(z)−1
∣∣ ≤

Kδ . According to the fact [Py(z)−1]′ = −Py(z)−1P ′
y(z)Py(z)

−1, we obtain that

maxz∈B̄(y,r)

∣∣∣
[
Py(z)−1

]′∣∣∣ ≤ Kδ .

Using the chain rule, one has that maxz∈B̄(y,r)

(|M(z)| + |N (z)| + |M ′(z)| + |
N ′(z)|) ≤ Kδ . Thus, there is some constant Kδ such that

∫ 1
0 f (σy,z(τ )) dτ ,

∫ 1
0 g(σy,z(τ )) dτ , M(z) and N (z) are Lipschitz continuous on B̄(y, r) with uniform
Lipschitz constant Kδ . Then we deduce that for any z, z1, z2 ∈ B̄(y, r),

|ϕ(z) − y| ≤ Kδ(h + |ΔŴ |), a.s, (3.11)

|ϕ(z1) − ϕ(z2)| ≤ Kδ(h + |ΔŴ |)|z1 − z2|, a.s. (3.12)

Since for almost sure ω ∈ Ω , |ΔŴ | ≤ Ah
√
h = √

4h| ln h| → 0 as h → 0, there
exists a positive h0 independent of ω, such that for every h < h0, Kδ(h + |ΔŴ |) <

min{1, r}, a.s. It follows from (3.11) and (3.12) that for every h < h0,ϕ is a contraction
mapping from B̄(y, r) into itself. Consequently, by the contraction mapping principle,
there is a unique Ȳ such that Ȳ = ϕ(Ȳ ), a.s., for all sufficiently small stepsizes h, and

|Ȳ − y| ≤ Kδ(h + |ΔŴ |), a.s. (3.13)

Further, the Taylor expansion leads to

L(Ȳ ) − L(y) =
∫ 1

0
∇L(σ (τ )) dτ(Ȳ − y), a.s.

Substituting (3.8) into the above formula yields L(Ȳ ) = L(y), a.s.
It follows from the definition of α0 and maxz∈B̄(y,r)

∣∣Py(z)−1
∣∣ ≤ Kδ that

|α0| ≤ Kδ

∣∣∣∣

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ

∣∣∣∣ , a.s. (3.14)

By the Taylor expansion, it holds that

∫ 1

0
f (σ (τ ))dτ = f (y) +

∫ 1

0
τ

∫ 1

0
f ′(y + θτ(Ȳ − y))(Ȳ − y) dθ dτ, a.s.

(3.15)
∫ 1

0
∇L(σ (τ ))dτ = ∇L(y) +

∫ 1

0
τ

∫ 1

0
∇L ′(y + θτ(Ȳ − y))(Ȳ − y) dθ dτ, a.s.

(3.16)
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Substituting (3.15) and (3.16) into (3.14), and using the fact ∇L f = 0, we have

|α0| ≤ Kδ(|Ȳ − y| + |Ȳ − y|2) ≤ Kδ|Ȳ − y| ≤ Kδ(h + |ΔŴ |), a.s.

Similarly, one has that |α1| ≤ Kδ(h+|ΔŴ |), a.s. Finally, using the fact (h+|ΔŴ |) →
0 as h tends to 0, we complete the proof. ��

As is seen in the above proof, although the randomness of y leads to the randomness
of B̄(y, r), the constants Kδ and r are independent of ω. Thus, h0 is also independent
of ω. Using the fact y0 ∈ M , we obtain a unique sequence {yn}Nn=0 satisfying yn+1 =
Ȳtn ,yn (yn), a.s., for sufficiently small stepsize h. Furthermore, L(yn) = L(y0), a.s.,
n = 1, 2, . . . , N .

Remark 3.2 As is seen in (3.7), we actually have that for sufficiently small h indepen-
dent of ω, |α| ≤ ε, a.s., which is essential to give the high-order-moment estimates of
the modification coefficient α. The key to the proof of the boundedness of α is the use
of the truncated Brownian increment |ΔŴ |. Otherwise, one can only obtain that for
every ε > 0 and every ω ∈ Ω , there exists an h0(ω) such that for all h(ω) ≤ h0(ω),
|α| ≤ ε.

Remark 3.3 If the initial value Y0 is a random variable, we can also establish the
solvability of the method (3.3). In this case, stronger assumptions on f , g,∇L
are required. For example, if Y0 ∈ U0, a.s., for some U0 ⊆ R

m , we define
N = {

y ∈ R
m
∣∣L(y) = L(x) for some x ∈ U0

}
, Nδ = {y ∈ R

m |dist(y,N ) ≤ δ }.
If we replace M by N , and Mδ by Nδ in Lemma 3.1, then the solvability of (3.3)
can be given similarly.

Next we introduce Legendre polynomials {Pj (t)} j≥0, which is a family of orthogonal
polynomials on the interval [0, 1]. For Legendre polynomials {Pj (t)} j≥0, it holds that

∫ 1

0
Pj (t) dt = 0, ∀ j ≥ 1,

∫ 1

0
Pj (t)t

k dt = 0, ∀ k < j . (3.17)

In the following, we will use the properties of Legendre polynomials to derive some
important lemmas. The authors in [1] give Lemma 3.1 and some facts in Chapter 6 by
means of Legendre polynomials, when dealing with numerical methods for conserva-
tive ODEs. Likewise, we obtain some useful lemmas in stochastic cases.

Lemma 3.4 Assume that f , g and ∇L are continuous, then

∑

j≥0

∫ 1

0
Pj (τ )∇L(σ (τ )) dτ ·

∫ 1

0
Pj (τ ) f (σ (τ )) dτ = 0,

∑

j≥0

∫ 1

0
Pj (τ )∇L(σ (τ )) dτ ·

∫ 1

0
Pj (τ )g(σ (τ )) dτ = 0. (3.18)
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Proof Since Legendre polynomials {Pj (t)} j≥0 form an orthonormal basis of the

Hilbert space L2 ([0, 1]), it follows that f (σ (τ )) = ∑
j≥0 Pj (τ )

[ ∫ 1
0 Pj (τ ) f (σ (τ ))

dτ
]
. Noting that ∇L(y) f (y) = 0, for all y ∈ R

m , one has

0 =
∫ 1

0
∇L(σ (τ )) f (σ (τ )) dτ

=
∫ 1

0
∇L(σ (τ )) ·

∑

j≥0

Pj (τ )

[∫ 1

0
Pj (τ ) f (σ (τ )) dτ

]
dτ

=
∑

j≥0

∫ 1

0
Pj (τ )∇L(σ (τ )) dτ ·

∫ 1

0
Pj (τ ) f (σ (τ )) dτ.

Likewise, we obtain the second equality of (3.18). ��
In the sequel, we will use a generic constant K , dependent on y but independent of h,
which may vary from one line to another.

Lemma 3.5 Let the assumptions of Lemma 3.1 hold. Let G be a scalar or vector-
valued function defined on Mδ and G(y) ∈ C( j+1)(Mδ). If y ∈ M , a.s., there is a
representation

∫ 1

0
Pj (t)G(σ (τ )) dτ = c jG

( j)(y)(Ȳ − y, . . . , Ȳ − y
︸ ︷︷ ︸

j

) + Mj,G, a.s., ∀ j ≥ 0,

(3.19)

where c j = 1
j !
∫ 1
0 Pj (τ )τ j dτ , and [E |Mj,G |2p] 1

2p = O(h( j+1)/2) for all p =
1, 2, 3, . . .

Proof Denote F := G ◦σ , then F is ( j + 1) times continuously differentiable. So the
Taylor expansion gives

F(τ ) =
j∑

k=0

F (k)(0)

k! τ k +
∫ 1

0

(1 − θ) j

j ! F ( j+1)(θτ )τ j+1 dθ.

Noting that
∫ 1
0 Pj (τ )τ k dτ = 0, for all k < j , we obtain

∫ 1

0
Pj (t)G(σ (τ )) dτ =

∫ 1

0
Pj (t)F(τ ) dτ

= F ( j)(0)

j !
∫ 1

0
Pj (τ )τ j dτ +

∫ 1

0
Pj (τ )

[∫ 1

0

(1 − θ) j

j ! F ( j+1)(θτ )τ j+1 dθ

]
dτ

=: c j F ( j)(0) + Mj,G,

where c j = 1
j !
∫ 1
0 Pj (τ )τ j dτ and Mj,G = ∫ 1

0 Pj (τ )
[∫ 1

0
(1−θ) j

j ! F ( j+1)(θτ )τ j+1 dθ
]

dτ .
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Further, F (k)(τ ) = G(k)(y + τ(Ȳ − y))(Ȳ − y, . . . , Ȳ − y
︸ ︷︷ ︸

k

), k = 0, 1, . . ., leads to

(3.19).
It remains to estimate the moments of Mj,G . It follows from the boundedness of

G( j+1) that |Mj,G | ≤ K j |Ȳ − y| j+1. By (3.13), the Hölder inequality and (2.12), we
have

[E |Mj,G |2p] 1
2p = O

(
h( j+1)/2

)
, ∀ p ≥ 1.

This completes the proof. ��
Next, we give the a prior estimate of the modification coefficient α.

Lemma 3.6 Under the assumptions of Lemma 3.1, if y ∈ M a.s., then α = (α0, α1)

determined by (3.3) satisfies

[E |α|2p] 1
2p = O(h), |E(ΔŴα)| = O(h2). (3.20)

Proof It follows from (3.13) that

Ȳ = y + R1,0 with [E |R1,0|2p]
1
2p = O(h1/2). (3.21)

By the Taylor expansion of f (σ (τ )) at y,

f (σ (τ )) = f (y) + τ

∫ 1

0
f ′(y + θτ(Ȳ − y))(Ȳ − y) dθ.

Integrating the above formula on both sides yields

∫ 1

0
f (σ (τ )) dτ = f (y) + R1, f with

R1, f =
∫ 1

0
τ

∫ 1

0
f ′(y + θτ(Ȳ − y))(Ȳ − y) dθdτ. (3.22)

For sufficiently small h, it follows from (3.13) that for some r > 0, σ(τ) ∈ B̄(y, r) ⊆
Mδ . Thus the boundedness of f ′ onMδ and (3.21) lead to [E |R1, f |2p]

1
2p = O(h1/2).

Similarly, we obtain

∫ 1

0
∇L(σ (τ )) dτ = ∇L(y) + R1,L with [E |R1,L |2p] 1

2p = O(h1/2). (3.23)

It follows from (3.23) that (3.3b) can be written as

(∇L + R1,L)(∇L� + R�
1,L)α0 =

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ. (3.24)
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By Lemmas 3.4, 3.5 and P0(t) ≡ 1, it holds that

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ

= −
∑

j≥1

∫ 1

0
Pj (τ )∇L(σ (τ )) dτ ·

∫ 1

0
Pj (τ ) f (σ (τ )) dτ

= −
∑

j≥1

⎡

⎢
⎣c j∇L( j)(y)(Ȳ − y, . . . , Ȳ − y

︸ ︷︷ ︸
j

) + Mj,∇L

⎤

⎥
⎦

×
⎡

⎢
⎣c j f ( j)(y)(Ȳ − y, . . . , Ȳ − y

︸ ︷︷ ︸
j

) + Mj, f

⎤

⎥
⎦

= K1∇L ′(y)(Ȳ − y)( f ′(y)(Ȳ − y)) + R1,α0 , (3.25)

where K1 = −c21 with c1 = ∫ 1
0 P1(τ )τ dτ , and [E |R1,α0 |2p]

1
2p = O(h1.5).

In what follows, our idea is to establish a rough estimate of α0 such that α0 can
reach 1

2 order in the mean square sense, then by the iteration argument, the order is
improved to be 1. Combining (3.24) and (3.25), we have

α0 = − [∇L∇L�]−1(∇LR�
1,L + R1,L∇L� + R1,L R

�
1,L)α0

+ K1[∇L∇L�]−1∇L ′(y)(Ȳ − y)( f ′(y)(Ȳ − y)) + [∇L∇L�]−1R1,α0 .

(3.26)

By (3.13), for sufficiently small h, |α0| ≤ 1, a.s. From assumptions on f and ∇L , it
follows that

|α0| ≤ K |R1,L | + K |R1,L |2 + K |Ȳ − y|2 + K |R1,α0 |. (3.27)

This implies that

[E |α0|2p]
1
2p = O(h1/2). (3.28)

Similarly, one has

[E |α1|2p]
1
2p = O(h1/2). (3.29)

According to (3.21), (3.26) and (3.28), we obtain

E |α0|2 ≤ K E(|R1,L |2|α0|2) + K E |R1,L |4 + K E |Ȳ − y|4 + K E |R1,α0 |2
≤ K [E(|R1,L |4]1/2[E |α0|4]1/2 + Kh2 + Kh3

≤ Kh2.
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That is to say, [E |α0|2]1/2 = O(h). Similarly, we have

[E |α0|2p]
1
2p = O(h). (3.30)

Thus (3.26) can be rewritten as

α0 = K1[∇L∇L�]−1∇L ′(y)(Ȳ − y)( f ′(y)(Ȳ − y)) + R̂1,α0 , (3.31)

with [E |R̂1,α0 |2p]
1
2p = O(h1.5).

We claim that Ȳ = y + ΔŴ g + R1,0 with [E |R1,0|2p]
1
2p = O(h).

Applying the Taylor expansion to g (σ (τ )) gives

g (σ (τ )) = g(y) + τ

∫ 1

0
g′ (y + θτ(Ȳ − y)

)
(Ȳ − y)dθ.

Since g′ is bounded, integrating the above formula on [0, 1] leads to
∫ 1

0
g(σ (τ ))dτ = g(y)+

∫ 1

0
τ

∫ 1

0
g′ (y + θτ(Ȳ − y)

)
(Ȳ − y)dθdτ =: g(y)+ R1,g

(3.32)
with |R1,g| ≤ K |Ȳ − y|. Thus, it follows from (3.21) that

[E |R1,g|2p]
1
2p = O(h1/2). (3.33)

Substituting (3.32) into (3.3a) produces

Ȳ = y + ΔŴ g + R1,0, (3.34)

where

R1,0 = h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α0

]

+ ΔŴ

[
R1,g −

∫ 1

0
∇L(σ (τ ))� dτ α1

]
.

Finally, using (3.28), (3.29), (3.33) and theHölder inequality,wehave [E |R1,0|2p]
1
2p =

O(h).

Substituting (3.34) into (3.31) gives

ΔŴα0 = K1ΔŴ 3[∇L∇L�]−1∇L ′g( f ′g)+R̃1,α0 with [E |R̃1,α0 |2p]
1
2p = O(h2).

Hence, |E(ΔŴα0)| = O(h2) due to (2.12).
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As for α1, analogous to the estimate on α0, one can show that

α1 = K1[∇L∇L�]−1∇L ′(y)(Ȳ − y)(g′(y)(Ȳ − y)) + R̂1,α1

with [E |R̂1,α1 |2p]
1
2p = O(h1.5),

ΔŴα1 = K1ΔŴ 3[∇L∇L�]−1∇L ′g(g′g) + R̃1,α1

with [E |R̃1,α1 |2p]
1
2p = O(h2).

Thus, [E |α1|2p]
1
2p = O(h) and |E(ΔŴα1)| = O(h2). ��

In the proof of Lemma 3.6, we obtain the low-oder expansion Ȳ − y = ΔŴ g +
R1,0 (see (3.34)). In next subsection concerning the convergence order of the MAVF
method, we will make a high-order expansion on Ȳ − y.

3.2.2 Convergence of MAVFmethods for SDEs with single noise

Theorem 3.7 Let the assumptions of Lemma 3.1 hold. If f ∈ C2
b(R

m,Rm), g ∈
C3
b(R

m,Rm) then the numerical method generated by (3.3) for SDE (3.1) has first
order convergence in mean square sense.

Proof Our idea is to use the Taylor expansion repeatedly to represent (3.3a) so that we
can use the Theorems 2.2 and 2.3 to prove the convergence. For this end, we divide
the proof into three steps:

Step 1: We claim that Ȳ = y+ΔŴ g+h f + 1
2ΔŴ 2g′g+ R2,0 with [E |R2,0|2p]

1
2p =

O(h1.5).
Applying the Taylor expansion to g produces

g(σ (τ )) = g(y)+τg′(y)(Ȳ − y)+τ 2
∫ 1

0
(1−θ)g′′(y+θτ(Ȳ − y))(Ȳ − y, Ȳ − y)dθ.

Noting the boundedness of g′′, we obtain

∫ 1

0
g(σ (τ ))dτ = g + 1

2
g′(y)(Ȳ − y) + R(1)

2,g (3.35)

with

R(1)
2,g =

∫ 1

0
τ 2
∫ 1

0
(1 − θ)g′′(y + θτ(Ȳ − y))(Ȳ − y, Ȳ − y)dθdτ and

× [E |R(1)
2,g|2p]

1
2p = O(h).

123



Modified averaged vector field methods preserving… 933

Substituting (3.34) into (3.35), we have

∫ 1

0
g(σ (τ ))dτ = g + 1

2
ΔŴ g′g + 1

2
g′R1,0 + R(1)

2,g

=: g + 1

2
ΔŴ g′g + R2,g with [E |R2,g|2p]

1
2p = O(h). (3.36)

Substituting (3.22) and (3.36) into (3.3a) leads to

Ȳ = y + ΔŴ g + h f + 1

2
ΔŴ 2g′g + R2,0, (3.37)

where

R2,0 = hR1, f − h
∫ 1

0
∇L(σ (τ ))�dτα0 + ΔŴ R2,g − ΔŴ

∫ 1

0
∇L(σ (τ ))�dτα1,

(3.38)

and [E |R2,0|2p]
1
2p = O(h1.5).

Step 2: Estimate of the expectation of R2,0.
Recall that R1, f = ∫ 1

0 τ
∫ 1
0 f ′(y+θτ(Ȳ − y))(Ȳ − y) dθdτ (see (3.22)). By the Taylor

expansion and the boundedness of f ′′,

R1, f = 1

2
f ′(y)(Ȳ − y) +

∫ 1

0
τ 2
∫ 1

0

[∫ 1

0
f ′′(y + λθτ)(Ȳ − y, Ȳ − y)dλ

]
θdθdτ

= 1

2
ΔŴ f ′g + R̂1, f

with [E |R̂1, f |2p]
1
2p = O(h). Thus, we have

|E(hR1, f )| = O(h2). (3.39)

Next we estimate the expectation of R2,g = 1
2g

′R1,0 + R(1)
2,g . Comparing (3.34) and

(3.37), we obtain

R1,0 = h f + 1

2
ΔŴ 2g′g + R2,0. (3.40)

Further, it follows from the Taylor expansion, the boundedness of g′′′ and (3.34) that

R(1)
2,g = 1

6
ΔŴ 2g′′(g, g) + R̂(1)

2,g with [E |R̂(1)
2,g|2p]

1
2p = O(h1.5). (3.41)

By (3.40), (3.41) and the definition of R2,g , one has

R2,g = 1

2
hg′ f + 1

4
ΔŴ 2g′(g′g) + 1

6
ΔŴ 2g′′(g, g) + R̃2,g with

[E |R̃(1)
2,g|2p]

1
2p = O(h1.5).
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The above formula and (2.12) yield

∣∣E(ΔŴ R2,g)
∣∣ = O(h2). (3.42)

Due to (3.23) and Lemma 3.6,

∣∣∣∣E
(
h
∫ 1

0
∇L(σ (τ ))dτα0

)∣∣∣∣ = O(h2) and

∣∣∣∣E
(

ΔŴ
∫ 1

0
∇L(σ (τ ))dτα1

)∣∣∣∣ = O(h2). (3.43)

Combining (3.38), (3.39), (3.42) and (3.43), we have

∣∣ER2,0
∣∣ = O(h2). (3.44)

Step 3: Comparison between (3.37) and Milstein method.
Consider the one-step Milstein approximation Ȳ [M] for (3.1):

Ȳ [M] = y + ΔWg + h f + 1

2
ΔW 2g′g. (3.45)

As is well known, Milstein method (3.45) satisfies Theorem 2.2 with p1 = 1.5, p2 =
2. Comparing the expansion (3.37) of our method (3.3) with Milstein method, we get

Ȳ − Ȳ [M] = (ΔŴ − ΔW )g + 1

2
(ΔŴ 2 − ΔW 2)g′g + R2,0

= √
h(ζh − ξ)g + 1

2
h(ζ 2

h − ξ2)g′g + R2,0.

(3.46)

Owing to Lemma 2.4, |E(ζ 2
h −ξ2)| = O(h2−ε), for every ε ∈ (0, 1), and E(ζh−ξ)2 =

O(h2). Moreover, one can prove E(ζh − ξ)4 = O(h2). The Hölder inequality and the
above evaluations lead to

E |Ȳ − Ȳ [M]|2 = O(h3), |E(Ȳ − Ȳ [M])| = O(h2). (3.47)

Thus the proof of (II) is completed by Theorem 2.3. ��

3.3 MAVFmethods for conservative SDEs withmultiple noises

In this section, we proposeMAVFmethods for conservative SDEswithmultiple noises
and prove that these methods are of mean square order 1 if noises are commutative.

We still suppose that L(y) : Rm → R
ν is the invariant of (2.1). Based on the ideas

of dealing with conservative SDEs with single noise, we construct the MAVF method
for (2.1) as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȳ = y + h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ α0

]

+
D∑

r=1

ΔŴr

[∫ 1

0
gr (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτ αr

]
,

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

]
α0 =

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ,

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

]
αr =

∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
gr (σ (τ )) dτ,

r = 1, . . . , D,

(3.48)
where σ(τ) = y + τ(Ȳ − y) and ΔŴr = √

hζrh is defined by (2.9) with
k = 2. In addition, αr , r = 0, 1, . . . , D, are R

ν-valued random variables. And
α = (α0, α1, . . . , αD) is called the modification coefficient.

Remark 3.8 If the invariant L of (2.1) is quadratic, and f , gr , r = 1, . . . , D,

are linear functions, then
∫ 1
0 f (σ (τ )) dτ = f ( Ȳ+y

2 ),
∫ 1
0 gr (σ (τ )) dτ = gr (

Ȳ+y
2 ),

∫ 1
0 ∇L(σ (τ )) dτ = ∇L(

Ȳ+y
2 ). Noting that ∇L f = ∇Lgr = 0, we have that α = 0.

In this case, method (3.48) becomes the stochastic midpoint method.

Theorem 3.9 Let f ∈ C2
b(R

m,Rm) and gr ∈ C3
b(R

m,Rm), r = 1, . . . , D. Sup-
pose that ∇L(y)∇L(y)� is invertible on M , and that for some bounded Mδ ,
∇L ∈ C1(Mδ). Then the numerical method generated by (3.48) for (2.1) possesses
the following properties:

(I) It preserves multiple invariants Li , i = 1, . . . , ν, of (2.1), i.e., L(Ȳ ) = L(y).
(II) If the noises of (2.1) satisfy the commutative conditions, i.e., g′

r gi = g′
i gr , i, r =

1, . . . , D, it is of mean square order 1.

Proof Given that the proof is similar to that of Theorem 3.7, we only give the sketch.
The first property (I) easily comes out as in the proof of Lemma 3.1.

Let us proceed to the proof of (II). First, as is done in Lemma 3.1, we acquire the
solvability of (3.48) and have that for every ε ≥ 0, there exists an h0 such that for all
h ≤ h0,

|α| ≤ ε a.s.

Then, analogous to Lemma 3.6, we have that

[E |α|2p] 1
2p = O(h), |E(ΔŴrα)| = O(h2), r = 1, . . . , D.

Further, using the Taylor expansion repeatedly, we acquire

Ȳ = y +
D∑

r=1

ΔŴr gr + 1

2

D∑

r=1

D∑

i=1

ΔŴrΔŴi g
′
r gi + h f + R, (3.49)
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where

R = 1

2
h

D∑

r=1

ΔŴr f
′gr + 1

2
h

D∑

r=1

ΔŴr g
′
r f −

D∑

r=1

ΔŴr∇L�αr

+1

6

D∑

r ,i, j=1

ΔŴrΔŴiΔŴ j g
′′
r (gi , g j ) + 1

4

D∑

r ,i, j=1

ΔŴrΔŴiΔŴ j g
′
r (g

′
i g j ) + R̃,

with [E |R̃|2p] 1
2p = O(h2).

Thus, it follows that

[E |R|2]1/2 = O(h1.5), |ER| = O(h2).

Further, Milstein method for (2.1) is

Ȳ [M] = y + h f +
D∑

r=1

grΔWr + 1

2

D∑

r=1

g′
r grΔW 2

r

+
∑

i �=r

g′
r gi

∫ t+h

t
(wi (θ) − wi (t)) dWr (θ), (3.50)

which has first order convergence in mean square sense under the assumptions on
f , gr . Note the fact

∫ t+h

t
(wi (θ) − wi (t)) dWr (θ) +

∫ t+h

t
(wr (θ) − wr (t)) dWi (θ) = ΔwiΔwr .

This means, in the case of commutative noises,

∑

i �=r

g′
r gi

∫ t+h

t
(wi (θ) − wi (t)) dWr (θ) =

∑

i<r

g′
r giΔwiΔwr = 1

2

∑

i �=r

g′
r giΔwiΔwr .

(3.51)

With (3.51), Milstein method (3.50) becomes

Ȳ [M] = y +
D∑

r=1

ΔWrgr + 1

2

D∑

r=1

D∑

i=1

ΔWiΔWrg
′
r gi + h f . (3.52)

Comparing (3.49) and (3.52), we have

[E |Ȳ − Ȳ [M]|2]1/2 = O(h1.5), |E(Ȳ − Ȳ [M])| = O(h2), (3.53)

which means that the method (3.48) is of mean square order 1 by Theorem 2.3. ��
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Remark 3.10 It is noted that if the noises are not commutative, the mean square order
of the method (3.48) is only 1

2 . In this case, (3.51) could not be obtained. Thus when
comparing (3.48) and (3.50), one obtains [E |Ȳ − Ȳ [M]|2]1/2 = O(h) and |E(Ȳ −
Ȳ [M])| = O(h2), which leads to 1

2 convergence order in the mean square sense.

4 Numerical integration

When the integrals contained in MAVF methods can not be obtained directly, we
need to use the numerical integration to approximate the integrals. In this section, we
investigate the effect of the numerical integration on MAVF methods, including the
mean square convergence order and the preservation of invariants.

Here, we recall some concepts of numerical integration. Consider the quadrature
formula (ci , bi )Mi=1 on the interval [0, 1]:

∫ 1

0
f (x) dx ≈

M∑

i=1

bi f (ci ). (4.1)

The quadrature formula (4.1) is said to have order q if it is exact for polynomials of
degree no larger than q − 1, i.e.,

∫ 1

0
xk dx =

M∑

i=1

bi c
k
i , k = 0, 1, . . . , q − 1.

Here are some examples of the quadrature formulas:

∫ 1

0
f (x) dx ≈ 1

2
[ f (0) + f (1)], (4.2)

∫ 1

0
f (x) dx ≈ 1

4

[
3 f

(
1

3

)
+ f (1)

]
, (4.3)

∫ 1

0
f (x) dx ≈ 1

2

[

f

(
3 − √

3

6

)

+ f

(
3 + √

3

6

)]

, (4.4)

∫ 1

0
f (x) dx ≈ 1

18

[

5 f

(
5 − √

15

10

)

+ 8 f

(
1

2

)
+ 5 f

(
5 + √

15

10

)]

, (4.5)

and their orders are 2, 3, 4, 6, respectively.
As is well known, if f ∈ Cq with q being the order of the quadrature formula (4.1),

then it holds that

∫ 1

0
f (x) dx =

M∑

i=1

bi f (ci ) + ρq f
(q)(η), (4.6)
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where η ∈ (0, 1) and ρq is independent of f . Next, we use the numerical integra-
tion to approximate the integrals in (3.48). The induced numerical method using the
quadrature formula (4.1) is

Ỹ = y + h

[
M∑

i=1

bi f (σ (ci )) −
M∑

i=1

bi∇L(σ (ci ))
�α0

]

+
D∑

r=1

ΔŴr

[
M∑

i=1

bi gr (σ (ci )) −
M∑

i=1

bi∇L(σ (ci ))
�αr

]

, (4.7a)

[
M∑

i=1

bi∇L(σ (ci ))

][
M∑

i=1

bi∇L(σ (ci ))
�
]

α0

=
[

M∑

i=1

bi∇L(σ (ci ))

][
M∑

i=1

bi f (σ (ci ))

]

, (4.7b)

[
M∑

i=1

bi∇L(σ (ci ))

][
M∑

i=1

bi∇L(σ (ci ))
�
]

αr

=
[

M∑

i=1

bi∇L(σ (ci ))

][
M∑

i=1

bi gr (σ (ci ))

]

, r = 1, . . . , D, (4.7c)

where σ(τ) = y + τ(Ỹ − y).

4.1 Mean square convergence order

In this part, we study the mean square convergence order of (4.7). Following the
procedure inSect. 3,wefirstly present the boundedness ofα, and the expansion formula

of Ȳ . Hereafter, we denote P(z, y) :=
[∑M

i=1 bi∇L(y + ci (z − y))
] [∑M

i=1 bi∇L

(y + ci (z − y))�
]
.

Lemma 4.1 Assume that f , gr ∈ C1
b(R

m,Rm) ∩ Cb(R
m,Rm), r = 1, . . . , D, L ∈

C2
b(R

m), and that P(y, z) is invertible for each y, z ∈ R
m with P−1 ∈ C1

b(R
m×R

m)∩
Cb(R

m ×R
m). Then for any given y ∈ R

m, the method (4.7) is uniquely solvable with
respect to Ỹ and α = (α0, . . . , αD), a.s., for sufficiently small stepsize h. In addition,
there is a representation

Ỹ = y +
D∑

r=1

ΔŴr gr + RỸ , (4.8)

with
[
E |RỸ |2p] 1

2p = O(h), p = 1, 2, . . . . Moreover, for every ε > 0, there exists
some h0 > 0 such that for all h ≤ h0,

|α| ≤ ε, a.s. (4.9)
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Proof Considering that this proof is similar to that of Lemma 3.1, we give the sketch of
the proof. Under the assumptions of this lemma, one can use the contraction mapping
principle to prove that there is a unique Ỹ satisfying (4.7) for sufficiently small stepsize
h independent of ω. It follows from the assumptions on f , gr and L that (4.8) holds.
Then using similar arguments as in the proof of Lemma 3.1, one can derive (4.9). ��

Remark 4.2 InLemma4.1, in order to acquire the solvability of theMAVFmethod (4.7)
using numerical integration, we make stronger assumptions than those in Lemma 3.1.
In practice, even though the numerical solution of this method may leave the manifold
M , the invariant-preserving error can still be controlled (see Theorem 4.9), and the
numerical solutions stay in some neighbourhood ofM (see for instance, the numerical
experiments in Sect. 5.2). Itmeans that (4.7) could be applied to some systems provided
that ∇L∇LT is invertible on some neighbourhood of M . It would be interesting to
investigate the mild assumptions to ensure the solvability of the MAVF method (4.7)
for a uniform stepsize independent of ω.

The following lemma is used to estimate the accuracy of the numerical integration
in (4.7).

Lemma 4.3 Let q be the order of the quadrature formula (ci , bi )Mi=1 and G be an
arbitrary scalar or vector-valued function. Let the assumptions of Lemma 4.1 hold. If
q ≥ 2 and G(q) ∈ Cb(R

m), then we have

∫ 1

0
G(σ (τ )) dτ =

M∑

i=1

biG(σ (ci )) + ΨG,q , (4.10)

where ΨG,q satisfies

[
E |ΨG,q |2p

] 1
2p = O

(
h

q
2

)
, ∀ p = 1, 2, . . . (4.11)

In addition, it holds that
(I) If q is odd, then

∣∣E
(
ΔŴrΨG,q

)∣∣ = O
(
h

q+1
2

)
, r = 1, . . . , D. (4.12)

(II) If q is even and G(q+1) ∈ Cb(R
m), then

∣∣E
(
ΔŴrΨG,q

)∣∣ = O
(
h

q+2
2

)
, r = 1, . . . , D. (4.13)

Proof We only prove the case that G is a scalar function, the case of vector-valued
function is analogous. According to (4.6), we have
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∫ 1

0
G(σ (τ )) dτ =

M∑

i=1

biG(σ (ci )) + ΨG,q ,

where ΨG,q = ρq
dq
dτq G(σ (τ ))

∣∣∣
τ=η

with η ∈ (0, 1).

Besides, it holds that

dq

dτ q
G(σ (τ ))

∣∣∣∣
τ=η

= G(q)(σ (η))(Ỹ − y, . . . , Ỹ − y
︸ ︷︷ ︸

q

). (4.14)

Due to (4.8) and boundedness of G(q), we have

[E |ΨG,q |2p]
1
2p = O

(
h

q
2

)
.

(I) If q is odd, the Hölder inequality yields

|EΔŴrΨG,q | = O
(
h

q+1
2

)
, r = 1, . . . , D.

(II) If q is even, it holds that

E
(
ΔŴi1ΔŴi2 · · · ΔŴiq+1

) = 0, ∀ i1, i2, . . . , iq+1 ∈ {1, 2, . . . , D}.

Since G(q+1) ∈ Cb, we have G(q)(σ (η)) = G(q)(y) + RG , with [E |RG |2p] 1
2p =

O(h1/2). Thus, using the Hölder inequality and (4.8) gives

|EΔŴrΨG,q | = O(h
q+2
2 ), r = 1, . . . , D.

��
Next, we give the a prior estimate of the modification coefficient α in (4.7).

Lemma 4.4 Let q be the order of the quadrature formula (ci , bi )Mi=1 in (4.7). Let the
assumptions of Lemma 4.1 hold. Assume that f , gr ,∇L ∈ C3

b(R
m), r = 1, . . . , D. If

q ≥ 2, then we have

[
E |α|2p

] 1
2p =O(h), p=1, 2, . . . and |E(ΔŴrα)|=O(h2), r =1, . . . , D.

(4.15)

Proof By (4.10), (4.7b) in (4.7) can be rewritten as

[∫ 1

0
∇L(σ (τ )) dτ − Ψ∇L,q

] [∫ 1

0
∇L(σ (τ ))� dτ − Ψ �∇L,q

]
α0

=
[∫ 1

0
∇L(σ (τ )) dτ − Ψ∇L,q

] [∫ 1

0
f (σ (τ )) dτ − Ψ f ,q

]
. (4.16)
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By arranging the above formula, we have

[∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
∇L(σ (τ ))� dτ

]
α0

=
∫ 1

0
∇L(σ (τ )) dτ

∫ 1

0
f (σ (τ )) dτ + Tα0 , (4.17)

where

Tα0 = −
∫ 1

0
∇L(σ (τ )) dτΨ f ,q − Ψ∇L,q

∫ 1

0
f (σ (τ )) dτ + Ψ∇L,qΨ f ,q

+
[
Ψ∇L,q

∫ 1

0
∇L(σ (τ ))� dτ +

∫ 1

0
∇L(σ (τ )) dτΨ �∇L,q − Ψ∇L,qΨ

�∇L,q

]
α0.

Using (3.23) and (3.25), we write (4.17) as

(∇L + R1,L)(∇L� + R�
1,L)α0 = K1∇L ′(y)(Ỹ − y)( f ′(y)(Ỹ − y)) + R1,α0 + Tα0 ,

where [E |R1,α0 |2p]
1
2p = O(h1.5).

Further, since [∇L∇L�]−1 is invertible, we have

α0 = − [∇L∇L�]−1(∇LR�
1,L + R1,L∇L� + R1,L R

�
1,L)α0 + [∇L∇L�]−1Tα0

+ K1[∇L∇L�]−1∇L ′(y)(Ỹ − y)( f ′(y)(Ỹ − y)) + [∇L∇L�]−1R1,α0 .

(4.18)

Next we prove the conclusion for different values of q.

Case 1 Since q = 2 is even and f , gr ,∇L ∈ C3
b(R

m), it follows from Lemma 4.3
that

[
E |Ψ f ,q |2p

] 1
2p = O(h),

[
E |Ψ∇L,q |2p

] 1
2p = O(h),

and

∣∣E
(
ΔŴrΨ f ,q

)∣∣ = O(h2),
∣∣E
(
ΔŴrΨ∇L,q

)∣∣ = O(h2).

Hence, [E |Tα0 |2p]
1
2p = O(h), and |EΔŴr Tα0 | = O(h2). Analogous to the proof of

Lemma 3.6, we have

[E |α|2p] 1
2p = O(h), |E(ΔŴrα)| = O(h2), r = 1, . . . , D.

Case 2 If q = 3, according to Lemma 4.3, we obtain

[E |Ψ f ,q |2p]
1
2p = O(h1.5), [E |Ψ∇L,q |2p]

1
2p = O(h1.5).
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Then the Hölder inequality yields

[E |Tα0 |2p]
1
2p = O(h1.5), |EΔŴr Tα0 | = O(h2).

Analogous to the proof of Lemma 3.6, we have

[E |α|2p] 1
2p = O(h), |E(ΔŴrα)| = O(h2), r = 1, . . . , D.

Case 3 For the case of q ≥ 4, since f ,∇L ∈ C3
b(R

m), the proof is the same as that of
Case 2.

Combining the above conclusions, we complete the proof. ��
Next we give the result of convergence of the method (4.7).

Theorem 4.5 Let the assumptions of Lemma 4.4 hold. If the noises satisfy the commu-
tative conditions, i.e., g′

r gi = g′
i gr , i, r = 1, . . . , D, then the method generated by

(4.7) is of mean square order 1.

Proof This proof is analogous to that of Theorem 3.9, we only give the sketch. It
follows from Lemma 4.3 that

Ỹ = y + h

[∫ 1

0
f (σ (τ )) dτ − Ψ f ,q −

∫ 1

0
∇L(σ (τ ))� dτα0 + Ψ �∇L,qα0

]

+
D∑

r=1

ΔŴr

[∫ 1

0
gr (σ (τ )) dτ − Ψgr ,q −

∫ 1

0
∇L(σ (τ ))� dταr + Ψ �∇L,qαr

]

= y + h

[∫ 1

0
f (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dτα0

]

+
D∑

r=1

ΔŴr

[∫ 1

0
gr (σ (τ )) dτ −

∫ 1

0
∇L(σ (τ ))� dταr

]
+ R[0], (4.19)

where

R[0] = −hΨ f ,q + hΨ �∇L,qα0 +
D∑

r=1

ΔŴr

[
−Ψgr ,q + Ψ �∇L,qαr

]
.

According to Lemmas 4.3 and 4.4, we have

[E |R[0]|2p] 1
2p = O(h1.5), |ER[0]| = O(h2).

Using the Taylor expansion, analogous to the proof of Theorem 3.9, we obtain

Ỹ = y +
D∑

r=1

ΔŴr gr + 1

2

D∑

r=1

ΔŴ 2
r g

′
r gr +

D−1∑

r=1

D∑

i=r+1

ΔŴiΔŴr g
′
r gi + h f + T [0].

(4.20)
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where

T [0] = 1

2
h

D∑

r=1

ΔŴr f
′gr + 1

2
h

D∑

r=1

ΔŴr g
′
r f

−
D∑

r=1

ΔŴr∇L�αr + 1

6

D∑

r ,i, j=1

ΔŴrΔŴiΔŴ j g
′′
r (gi , g j )

+1

4

D∑

r ,i, j=1

ΔŴrΔŴiΔŴ j g
′
r (g

′
i g j ) + R[0] + R̂[0], (4.21)

with
[
E |R̂[0]|2]1/2 = O(h2). Thus, it holds that

[E |T [0]|2]1/2 = O(h1.5), |ET [0]| = O(h2).

Comparing (4.20) with Milstein method for (2.1), we obtain that the method (4.7) is
of mean square order 1. ��
Remark 4.6 As is explained in Remark 3.10, if the noises are not commutative, the
mean square convergence order of (4.7) is 1

2 .

4.2 Invariant-preserving order in mean square sense

It is worth noting that themethod (4.7) does not generally preserve exactly the invariant
of the original system, due to the use of the quadrature formula, which makes it
necessary to study the preservation of invariant of (4.7). In the following, we give the
definition of invariant-preserving order in mean square sense.

Definition 4.7 A numerical discretization {yn}Nn=0 is said to have invariant-preserving
order p in mean square sense, if the invariant L(y) of (2.1) satisfies

[E |L(yN ) − L(y0)|2]1/2 = O(h p). (4.22)

Let {yn}Nn=0 be the numerical discretization corresponding to the one-step approxima-
tion (4.7) with y0 = Y0, and denote Ỹtn ,yn (tn+1) = yn+1, n = 0, 1, . . . , N − 1. The
numerical method generated from the one-step approximation (4.7) reads

Ỹtn ,yn (tn+1) = yn + h

[
M∑

i=1

bi f (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�α0

]

+
D∑

r=1

ΔŴr ,n

[
M∑

i=1

bi gr (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�αr

]

, (4.23a)

[
M∑

i=1

bi∇L(σn(ci ))

][
M∑

i=1

bi∇L(σn(ci ))
�
]

α0 =
[

M∑

i=1

bi∇L(σn(ci ))

][
M∑

i=1

bi f (σn(ci ))

]

,

(4.23b)
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[
M∑

i=1

bi∇L(σn(ci ))

][
M∑

i=1

bi∇L(σn(ci ))
�
]

αr =
[

M∑

i=1

bi∇L(σn(ci ))

]

×
[

M∑

i=1

bi gr (σn(ci ))

]

, r = 1, . . . , D, (4.23c)

where σn(τ ) = yn + τ(Ỹtn ,yn (tn+1) − yn)), and ΔŴr ,n = ΔŴr (tn+1) − ΔŴr (tn),
r = 1, . . . , D, n = 0, 1, . . . , N − 1, are mutually independent truncated Brownian
increments.
The following lemma gives the one-step error estimate on the conservation of the
invariant of (4.23).

Lemma 4.8 Let the assumptions of Lemma 3.1 hold. Assume that (∇L)(q+1) ∈
Cb(R

m). Let q be the order of the quadrature formula (ci , bi )Mi=1 in (4.7). If q ≥ 2,
then it holds that

[
E |L(Ỹtn ,yn (tn+1)) − L(yn)|2

]1/2 = O
(
h

q+1
2

)
, n = 0, 1, . . . , N − 1, (4.24)

and

∣∣E
[
L(Ỹtn ,yn (tn+1)) − L(yn)

∣∣Ftn

]∣∣ =

⎧
⎪⎨

⎪⎩

O
(
h

q+2
2

)
, if q is even,

O
(
h

q+1
2

)
, if q is odd.

(4.25)

Proof Let yn denote a random variable and y ∈ M denote a deterministic variable in
this proof. It follows from the Taylor expansion that

L(Ỹtn ,yn (tn+1)) − L(yn) =
∫ 1

0
∇L(σn(τ )) dτ(Ỹtn ,yn (tn+1) − yn). (4.26)

By (4.10), we have

∫ 1

0
∇L(σn(τ )) dτ =

M∑

i=1

bi∇L(σn(ci )) + Ψ∇L,q , (4.27)

with
[
E |Ψ∇L,q |2p

] 1
2p = O

(
h

q
2

)
.

Substituting (4.27) and (4.23a) into (4.26) gives

L(Ỹtn ,yn (tn+1)) − L(yn)

= h

[
M∑

i=1

bi∇L(σn(ci )) + Ψ∇L,q

][
M∑

i=1

bi f (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�α0

]

+
D∑

r=1

ΔŴr ,n

[
M∑

i=1

bi∇L(σn(ci )) + Ψ∇L,q

]
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×
[

M∑

i=1

bi gr (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�αr

]

.

Utilizing (4.23b) and (4.23c), we obtain

L(Ỹtn ,yn (tn+1)) − L(yn)

= hΨ∇L,q

[
M∑

i=1

bi f (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�α0

]

+
D∑

r=1

ΔŴr ,nΨ∇L,q

[
M∑

i=1

bi gr (σn(ci )) −
M∑

i=1

bi∇L(σn(ci ))
�αr

]

. (4.28)

In order to acquire (4.24), it suffices to estimate the lowest-order term

D∑

r=1

ΔŴr ,nΨ∇L,q

[
M∑

i=1

bi gr (σn(ci ))

]

.

According to assumptions on f , gr , ∇L and the Hölder inequality, it follows from
(4.11) that

E |L(Ỹtn ,yn (tn+1)) − L(yn)|2 ≤ K
D∑

r=1

E
[
|ΔŴr ,n|2|Ψ∇L,q |2

]
+ Khq+2

≤ Kh
[
E |Ψ∇L,q |4

]1/2 + Khq+2

≤ Khq+1, (4.29)

which proves (4.24).
If yn is replaced by the deterministic variable y, we are able to use Lemma 4.3 and

acquire that

|EΔŴrΨ∇L,q | =

⎧
⎪⎨

⎪⎩

O
(
h

q+2
2

)
, if q is even,

O
(
h

q+1
2

)
, if q is odd.

(4.30)

Thus, we have

∣∣E
[
L(Ỹtn ,y(tn+1)) − L(y)

]∣∣ =

⎧
⎪⎨

⎪⎩

O
(
h

q+2
2

)
, if q is even,

O
(
h

q+1
2

)
, if q is odd.

Notice that yn is Ftn -measurable and that Ỹtn ,y(tn+1) − L(y) is Ftn -independent.
According to the property of conditional expectations (see [10, Chapter 1]), we have
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E
[
L(Ỹtn ,yn (tn+1)) − L(yn)

∣∣Ftn

] = (
E
[
L(Ỹtn ,y(tn+1)) − L(y)

])∣∣
y=yn

. (4.31)

In this way, we obtain (4.25). ��
We now give the result about the invariant-preserving order in mean square sense

for (4.23).

Theorem 4.9 Under the assumptions of Lemma 4.8, it holds that

[
E |L(yN ) − L(y0)|2

]1/2 =

⎧
⎪⎨

⎪⎩

O
(
h

q
2

)
, if q is even,

O
(
h

q−1
2

)
, if q is odd.

(4.32)

Proof Denote en = E |L(yn) − L(y0)|2, n = 0, 1, . . . , N , and we have

en+1 = E |L(yn+1) − L(y0)|2
= E |L(yn+1) − L(yn) + L(yn) − L(y0))|2
= E |L(yn+1) − L(yn)|2 + E |L(yn) − L(y0)|2

+2E
[
(L(yn) − L(y0))

� (L(yn+1) − L(yn))
]

= en + E |L(yn+1) − L(yn)|2 + 2S, n = 0, 1, . . . , N − 1, (4.33)

where S = E
[
(L(yn) − L(y0))� (L(yn+1) − L(yn))

]
. Since yn and y0 are Ftn -

measurable, it follows that

S = E
(
E
[
(L(yn) − L(y0))

�(L(yn+1) − L(yn))
∣∣∣Ftn

])

= E
[
(L(yn) − L(y0))

�E
(
L(yn+1) − L(yn)|Ftn

)]

≤
[
E |L(yn) − L(y0)|2

]1/2 {
E
∣∣E
[
L(yn+1) − L(yn)|Ftn

]∣∣2
}1/2

= e1/2n

{
E
∣∣E
[
L(yn+1) − L(yn)|Ftn

]∣∣2
}1/2

. (4.34)

Substituting (4.34) into (4.33) and using Young’s inequality ab ≤ 1
2 (a

2 + b2), we
obtain

en+1≤en + E |L(yn+1) − L(yn)|2+hen+h−1
{
E
∣∣E
[
L(yn+1) − L(yn)|Ftn

]∣∣2
}

.

(4.35)

Note that yn+1 = Ỹtn ,yn (tn+1). Utilizing (4.24) and (4.25) in Lemma 4.8, we have
(1) If q is odd, then

en+1 ≤ en(1 + h) + Khq+1 + h−1Khq+2

≤ en(1 + h) + Khq+1. (4.36)
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It follows from Gronwall’s inequality (see [10, Lemma 1.6]) that en ≤ Khq , i.e.,
e1/2n ≤ Kh

q
2 , n = 0, 1, . . . , N .

(2) If q is odd, we similarly have

en+1 ≤ en(1 + h) + Khq . (4.37)

Thus, Gronwall’s inequality leads to e1/2n ≤ Kh
q−1
2 , n = 0, 1, . . . , N . This completes

the proof. ��
Remark 4.10 In fact, if f , gr , r = 1, . . . , D, and ∇L(y) are polynomials with degree
no larger than q − 1, then the quadrature formulas in (4.23) are exactly equal to the
integrals in (3.48). In this case, (4.23) exactly preserves the invariant L(y). For the
general case, Theorem 4.9 implies that the invariant-preserving order in mean square
sense of MAVF methods using numerical integration only depends on the order of the
quadrature formulas.

5 Numerical experiments

In this section, we implement numerical experiments to verify our theoretical analyses.
And we show the superiority of MAVF methods when applied to conservative SDEs.

5.1 MAVFmethods

In this part, we take the method (3.48) as an example to explain how MAVF methods
are applied to concrete problems. For a conservative SDE with coefficients satisfying
the conditions of Theorem 3.9, then the numerical method generated by (3.48) can be
written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn+1 = yn + h

[∫ 1

0
f (yn + τ(yn+1 − yn)) dτ −

∫ 1

0
∇L(yn + τ(yn+1 − yn))

� dτ α0,n

]

+
D∑

r=1

ΔŴr ,n

[∫ 1

0
gr (yn + τ(yn+1 − yn)) dτ −

∫ 1

0
∇L(yn + τ(yn+1 − yn))

� dτ αr ,n

]
,

α0,n =
[∫ 1

0
∇L(yn + τ(yn+1 − yn)) dτ

∫ 1

0
∇L(yn + τ(yn+1 − yn))

� dτ

]−1

×
[∫ 1

0
∇L(yn + τ(yn+1 − yn)) dτ

∫ 1

0
f (yn + τ(yn+1 − yn)) dτ

]
,

αr ,n =
[∫ 1

0
∇L(yn + τ(yn+1 − yn)) dτ

∫ 1

0
∇L(yn + τ(yn+1 − yn))

� dτ

]−1

×
[∫ 1

0
∇L(yn + τ(yn+1 − yn)) dτ

∫ 1

0
gr (yn + τ(yn+1 − yn)) dτ

]
, r = 1, . . . , D,

(5.1)
where ΔŴr ,n = √

hζrh,n is the truncation of Wr (tn+1) − Wr (tn) = √
hξr ,n with

Ah = √
4|lnh| (see (2.9)). Note that (5.1) is an implicit method. We denote the
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right hand side of (5.1) by F(yn, yn+1, α0,n, . . . , αD,n, h,ΔŴ1,n , . . . , ΔŴD,n), and
then (5.1) is rewritten as (yn+1, α0,n, . . . , αD,n) = F(yn, yn+1, α0,n, . . . , αD,n, h,

ΔŴ1,n, . . . , ΔŴD,n). In order to approximately solve yn+1 andαi,n, i = 0, 1, . . . , D,
the fixed point iteration is applied, i.e.,

(
y(P)
n+1, α

(P)
0,n , . . . , α

(P)
D,n

)

= F
(
yn, y

(P−1)
n+1 , α

(P−1)
0,n , . . . , α

(P−1)
D,n , h,ΔŴ1,n, . . . , ΔŴD,n

)
,

where P = 1, 2, . . . The initial value of iteration at each step can be taken as y(0)
n+1 =

yn and α
(0)
i,n = 0, i = 0, 1, . . . , D. The iteration stops if max

{
|y(P)

n+1 − y(P−1)
n+1 | ,

|α(P)
0,n − α

(P−1)
0,n |, . . . , |α(P)

D,n − α
(P−1)
D,n |

}
< ε, where ε is the given error tolerance.

In the following, we present three examples to compare MAVF methods with
stochastic midpoint method (see e.g. [5]) and the projectionmethod based onMilstein,
i.e., the MilsteinP method (see [15]). These methods have first order convergence in
mean square sense, if noises are commutative.

5.1.1 Example 1: Kubo oscillator

Consider the following stochastic harmonic oscillator in [9]

{
dX1(t) = −aX2(t)dt − σ X2(t) ◦ dW (t),

dX2(t) = aX1(t)dt + σ X1(t) ◦ dW (t),
(5.2)

where a and σ are constants, and W (t) is a one-dimensional Brownian motion. The
quadratic function I (x1, x2) = 1

2 (x
2
1 + x22 ) is the invariant of (5.2). In the numerical

test, we take a = σ = 1 and the initial value (X1(0), X2(0)) = (1, 0). For this
system, the level setM = {

(y1, y2) ∈ R
2
∣∣y21 + y22 = 1

}
. Then one could takeMδ ={

(y1, y2) ∈ R
2
∣∣0.5 ≤ y21 + y22 ≤ 1.5

}
and verify that the coefficients and the invariant

I satisfy the conditions of Theorem 3.7. In fact, from Remark 3.8, we know that the
MAVF method (3.3) for this system is reduced to stochastic midpoint method.

Figure 1 displays the convergence order of the MAVF method (3.3) and the Mil-
steinP method in mean square sense. Here, the reference solution is obtained by
Milstein method with stepsize hre f = 2−14. The mean square errors are computed at
the endpoint T = 1 by adopting five different stepsizes h = 2−5, 2−6, 2−7, 2−8, 2−9.
The expectation is realized by using the average of 1000 independent sample paths.
The convergence of order one, as is shown in this figure, is observed for the MAVF
method, which is consistent with theoretical analyses of Theorem 3.7.

Figures 2 and 3 show the long time behavior, including the evolution of errors of
invariant and the evolution of the global mean square errors, of the MAVF method
and the MilsteinP method when numerically simulating Kubo oscillator. The exact
solution is simulated by usingMilstein method with hre f = 10−5, and the expectation
is approximated by using the average of 1000 independent sample paths. Figure 2

123



Modified averaged vector field methods preserving… 949

10-3 10-2

h

10-3

10-2
(E

(Y
N

-Y
(t N

))
2 )1/

2

Mean Square Convergence

ref.line (slope 1)
MAVF
MilsteinP

Fig. 1 Mean square errors of the MAVF method and the MilsteinP method at T=1 for Kubo oscillator. The
dashed reference line has slope 1

0 10 20 30 40 50 60 70 80 90 100
t

0

1

2

3

4

5

6

|I(
Y

n)-
I(Y

0)|

10-15 Errors of Invariant

MAVF
MilsteinP

Fig. 2 Errors of invariant I (x1, x2) = 1
2 (x21 + x22 ) of the MAVF method and the MilsteinP method for

Kubo oscillator with T = 100, h = 0.01

illustrates that both methods preserve the invariant if ignoring the round-off error. In
terms of the evolution of the errors of invariant, the MilsteinP method behaves slightly
better. Figure 3 displays the evolution of the global mean square errors in two different
kinds of time intervals; see Fig. 3a for the time interval [0, 1], and Fig. 3b for the time
interval [0, 100]. From Fig. 3, we observe that the mean square errors of the MAVF
method are always smaller than that of the MilsteinP method, and that both of the
errors evolve linearly.

5.1.2 Example 2: Stochastic cyclic Lotka–Volterra system

Consider the following stochastic dynamical system

d

⎛

⎝
X(t)
Y (t)
Z(t)

⎞

⎠ =
⎛

⎝
X(t)(Z(t) − Y (t))
Y (t)(X(t) − Z(t))
Z(t)(Y (t) − X(t))

⎞

⎠ d t+c

⎛

⎝
X(t)(Z(t) − Y (t))
Y (t)(X(t) − Z(t))
Z(t)(Y (t) − X(t))

⎞

⎠◦dW (t), (5.3)
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Fig. 3 Global mean square errors of the MAVF method and the MilsteinP method for Kubo oscillator with
h = 0.01. The left one is plotted with T = 1 and the right one is with T = 100
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Fig. 4 Mean square errors of the MAVF method and midpoint method at T=1 for stochastic cyclic Lotka–
Volterra system with y0 = [1, 2, 1]�. The dashed reference line has slope 1

where c is a real-valued constant and W (t) is a one-dimensional Brownian motion. It
can be regarded as a cyclic Lotka–Volterra system of competing 3-species in a chaotic
environment [15]. It is verified that (5.3) has two conservative quantities

I1(x, y, z) = x + y + z, I2(x, y, z) = x · y · z. (5.4)

In this experiment, we set c = 0.5. Then, the exact solution of system (5.3) remains
on the one-dimensional manifold

M =
{
(x, y, z) ∈ R

3|I1(x, y, z) = X0 + Y0 + Z0, I2(x, y, z) = X0 · Y0 · Z0

}
,

which is a closed curve in three-dimensional Euclid space. We compare the MAVF
method with midpoint method to demonstrate the strengths of the proposed method.

Figure 4 shows the convergence orders of theMAVFmethod and midpoint method.
The reference solution is obtained by Milstein method with step size hre f = 2−14.
The mean square errors are computed at the endpoint T = 1 by adopting five different
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Fig. 5 Numerical sample paths of the MAVF method and midpoint method for stochastic cyclic Lotka–
Volterra system with T = 100, h = 0.01 and y0 = [1.8, 3.6, 1.8]�
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Fig. 6 Errors of invariants of the MAVF method and midpoint method for stochastic cyclic Lotka–Volterra
system with T = 100, h = 0.01 and y0 = [1.8, 3.6, 1.8]�

stepsizes h = 2−5, 2−6, 2−7, 2−8, 2−9. The expectation is approximated using the
average of 1000 independent sample paths. It is observed that the MAVF method for
this system is of mean square order 1.

The numerical sample paths of the MAVF method and midpoint method are shown
in Fig. 5 with time interval length T = 100 and step size h = 0.01. We observe that
numerical solutions of theMAVFmethod, along one sample, lie in themanifoldM , but
those of midpoint method do not. Figure 6 displays the errors of invariants of these two
methods. Here the error is denoted by max{|I1(Yn)− I1(Y0)|, |I2(Yn)− I2(Y0)|}. As is
seen in this figure, the MAVF method exactly preserves the two invariants. Although
the coefficients of system (5.3) do not satisfy the globally Lipschitz conditions as
required in Theorem 3.9, the MAVF method for original system still works well,
which indicates that MAVF methods can be applied to more general systems.

Figure 7 presents the evolution of the global mean square errors, and Fig. 8 presents
their errors at three different time intervals. The expectation is approximated by using
the average of 1000 independent sample paths. As is seen in Fig. 7, the mean square
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Fig. 7 Global mean square errors of the MAVF method and midpoint method for stochastic cyclic Lotka–
Volterra system with y0 = [1, 2, 1]� and h = 0.01
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Fig. 8 Global mean square errors, in different time intervals, of the MAVF method and midpoint method
for stochastic cyclic Lotka–Volterra system with y0 = [1, 2, 1] and h = 0.01

errors of the MAVFmethod are very close to those of midpoint method. One observes
from Fig. 8a that midpoint method has smaller global errors in the very beginning.
Figure 8b, c show that the mean square errors of midpoint method gradually exceed
that of the MAVF method.
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5.1.3 Example 3: Stochastic Hamiltonian systemwith multiple invariants

In this experiment, we consider the following Stochastic Hamiltonian system with
commutative noises

d

⎛

⎜⎜
⎝

Y1(t)
Y2(t)
Y3(t)
Y4(t)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

Y3(t)
Y4(t)

−Y1(t)
−Y2(t)

⎞

⎟⎟
⎠ (dt + c1 ◦ dW1(t) + c2 ◦ dW2(t)) , (5.5)

where c1 and c2 are constants, and W1(t) and W2(t) are two independent Brownian
motions. The system (5.5) can be regarded as the extension of Example 3.1 in [11].
One can verify that this system has three invariants

L1(y1, y2, y3, y4) = y1y4 − y2y3,

L2(y1, y2, y3, y4) = 1

2

(
y21 − y22 + y23 − y24

)
,

L3(y1, y2, y3, y4) = y1y2 + y3y4.

(5.6)

In this experiment, we take parameters c1 = 1, c2 = 0.5 and the initial value Y0 =
(−0.5, 0, 0.5, 1)�. We compare the MAVF method with the MilsteinP method for
(5.5). It follows from Remark 3.8 that the MAVF method (3.48) becomes midpoint
method when applied to this stochastic Hamiltonian system.

We can observe from Fig. 9 that the mean square convergence order is one when
applying the MAVF method to (5.5). The mean square errors are computed at the
endpoint T = 1 by adopting five different stepsizes h = 2−5, 2−6, 2−7, 2−8, 2−9.
The reference solution is obtained byMilstein methodwith step size hre f = 2−14. The
expectation is evaluated by the average of 1000 independent sample paths. This verifies
the conclusion about convergence in Theorem 3.9 under the case of commutative
noises.
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Fig. 9 Mean square errors of theMAVFmethod and theMilsteinPmethod at T=1 for stochasticHamiltonian
system. The dashed reference line has slope 1
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Fig. 10 Errors of invariants of the MAVF method and the MilsteinP method for stochastic Hamiltonian
system with T = 100 and h = 0.01
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Fig. 11 Global mean square errors of the MAVF method and the MilsteinP method for stochastic Hamilto-
nian system with h = 0.01. The left one is plotted with T = 1 and the right one with T = 100

Figure 10 displays the errors of invariants L1, L2 and L3, respectively, when apply-
ing theMAVFmethod and theMilsteinPmethod to (5.5).Weobserve that bothmethods
preserve these three invariants up to the round-off error, but the MilsteinP method pre-
serves better. In the aspect of the global mean square error, as shown in Fig. 11, the
MAVFmethod behaves better than theMilsteinP method and both of the errors evolve
linearly.
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Fig. 12 Mean square errors of MAVF-Q2 method at T=1 for stochastic pendulum problem. The dashed
reference line has slope 1

Table 1 Errors of invariant of MAVF-Q2 method, MAVF-Q4 method, and MAVF-Q6 method at different
times along single sample path for stochastic pendulum problem with T = 10000 and h = 0.01

t 100 500 1000 5000 10000 CPU time

MAVF-Q2 0.0009 0.0036 0.0189 0.0193 0.0101 78s

MAVF-Q4 0.0145E−05 0.2108E−05 0.4764E−05 0.8180E−05 0.9179E−05 61s

MAVF-Q6 0.0007E−05 0.0095E−05 0.0170E−05 0.0738E−05 0.1478E−05 59s

5.2 MAVFmethods using numerical integration

In this section, we perform numerical experiments to present the effect of numerical
integration on MAVF methods. The MAVF methods (4.7) using the quadrature for-
mulas (4.2), (4.3), (4.4) and (4.5) are called MAVF-Q2 method, MAVF-Q3 method,
MAVF-Q4 method and MAVF-Q6 method respectively.

Consider the following SDE with commutative noises (see [3])

d

(
p
q

)
=
(
0 −1
1 0

)(
p

sin(q)

)
dt +

(
0 − cos(q)

cos(q) 0

)

×
(

p
sin(q)

)
(c1 ◦ dW1(t) + c2 ◦ dW2(t)) , (5.7)

where c1, c2 are constants, and W1(t), W2(t) are two independent Brownian motions.
This system has I (p, q) = 1

2 p
2 − cos(q) as its invariant. We take c1 = 1, c2 = 0.5,

and the initial value (p0, q0) = (0.2, 1) in this experiment.
Figure 12 shows the convergence order of MAVF-Q2 method. The reference solu-

tion is obtained by Milstein method with step size hre f = 2−14. The mean square
errors are computed at the endpoint T = 1 by adopting five different stepsizes
h = 2−5, 2−6, 2−7, 2−8, 2−9. The expectation is approximated by using the aver-
age of 1000 independent sample paths. It is observed that the conservative method
for this system is of mean square order 1, which is consistent with the conclusion of
Theorem 4.5.
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Fig. 13 Numerical sample paths of MAVF method, MAVF-Q2 method, MAVF-Q4 method and MAVF-Q6
method for stochastic pendulum problem with T = 10000 and h = 0.01

Figure 13 presents the sample paths of the MAVF method, MAVF-Q2 method,
MAVF-Q4 method and MAVF-Q6 method. The interval length is T = 10000 and the
stepsize h = 0.01. Table 1 shows the errors of invariant of these three methods and
their computation time along a single sample path. As is seen in Fig. 13 and Table 1,
as the order of the quadrature formula enlarges, the invariant is preserved better.

Figure 14 shows invariant-preserving orders in mean square sense of the MAVF
methods using numerical integration. Here, we use MAVF-Q2 method, MAVF-Q3
method,MAVF-Q4method to perform numerical experiments. The reference solution
is obtained by Milstein method with step size hre f = 2−14. The invariant-preserving
orders in mean square sense are computed at the endpoint T = 1 by adopting five
different stepsizes h = 2−6, 2−7, 2−8, 2−9, 2−10. The expectation is approximated
by using the average of 1000 independent sample paths. It is shown that MAVF-
Q2 method and MAVF-Q3 method have mean square order 1 in the preservation of
invariants, while MAVF-Q4 method has mean square order 2. These results coincide
with those of Theorem 4.9.
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Fig. 14 Invariant-preserving orders in mean square sense of MAVF-Q2 method, MAVF-Q3 method and
MAVF-Q4 method at T=1 for stochastic pendulum problem. The two dashed reference lines have slope 1
and 2 respectively
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